Heat transfer in a novel microwave heating device coupled with atomization feeding

Author:

Yu Shangzhi1,Xie Qinglong1,Mao Xiaoning1,Duan Ying1,Nie Yong1

Affiliation:

1. Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China

Abstract

The heat transfer characteristics of the microwave heating coupled with atomization feeding were investigated using ethanol as the spray medium on a pressure swirl nozzle. The effects of spray height, flow rate and temperature on the sauter mean diameter (SMD) of atomized droplets were examined. The results showed that the droplet SMD was 12-130 ?m, which increased with the spray height and decreased with the flow rate and temperature of spray medium. Through the fitting of the experimental data, the dimensionless correlation of the droplet SMD which was based on orifice diameter, Reynolds and Ohnesorge numbers was obtained. The calculated results were basically consistent with the experimental data within 15% error. The heat transfer characteristics of atomized droplets on high-temperature surface of SiC bed heated by microwave were then investigated. The effects of spray flow rate, spray height and spray temperature on the heat transfer characteristics were examined. The power of spray heat transfer decreased with the temperature and increased with the spray flow rate and spray height. The dimensionless correlation to describe the heat transfer characteristics of atomized droplets on the high-temperature SiC surface under the microwave heating was obtained which included thermophysical properties of spray medium, spray parameters, and temperatures of the high-temperature bed surface and spray medium, with the error of ?20%. These correlations can be used to predict the SMD of the atomized droplets and the power of spray heat transfer in the microwave heating process.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3