Advanced exergy analysis of the natural gas liquid recovery process

Author:

Jovijari Fakhrodin1,Kosarineia Abbas1,Mehrpooya Mehdi2,Nabhani Nader3

Affiliation:

1. Department of mechanical Engineering, Ahvaz branch, Islamic Azad University, Ahvaz, Iran

2. Department of mechanical Engineering, Ahvaz branch, Islamic Azad University, Ahvaz, Iran + Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

3. Department of mechanical Engineering, Ahvaz branch, Islamic Azad University, Ahvaz, Iran + Department of Mechanical Engineering, Petroleum University of Technology (PUT), Ahwaz, Iran

Abstract

Energy quality in each country is one of the important indicators of economic development, Which affects the economic growth of that country. Exergy analysis, considering all flow properties including pressure, temperature, composition, is a powerful way to evaluate the energy consumption of equipment such as natural gas and liquefied gas plants. Inefficiency of a system can be defined by the conventional exergy analysis method, While, irreversible resources and real potentials for system improvement can only be identified by the advanced exergy analysis method. This analysis splits conventional exergy destruction into two exogenous and endogenous parts according to origin, and also unavoidable and avoidable parts according to the ability to remove and modifications. In this method, the exergy concept was separated by considering the ideal and avoidable condition assumptions. As a real case study, a natural gas liquid plant 800, from National Iranian South Oil Company located in southwest of Iran was considered to be investigated by conventional exergy analysis, advanced exergy analysis methods. The results of conventional exergy analysis illustrated that the highest amount of exergy destruction belonged to compressor and heat exchanger with 509.99 and 629.04 kW, respectively. However, in the case of heat exchanger, despite having the highest rate of exergy destruction, it is not considered in modification priorities due to its low avoidable exergy destruction value. Also, advanced exergy analysis suggested that the exergy destruction of the compressor and heat exchanger will be reduced by improving performance of these components.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3