Optimization of artillery projectiles base drag reduction using hot base flow

Author:

Dali Mohammed1,Jaramaz Slobodan2

Affiliation:

1. University of Defence, Military Academy, Belgrade

2. Faculty of Mechanical Engineering, Belgrade

Abstract

The CFD numerical simulations were carried out to investigate the base drag characteristics of a projectile with base bleed unit with a central jet. Different base bleed grain types with different combustion temperatures were used. The goal was to find a way to effectively control the base flow for base drag reduction and optimisate the latter using an adequate CFD software. Axisymmetric, compressible, mass-averaged Navier-Stokes equations are solved using the k-? SST, transition k-kl-?, and RSM turbulence models. The various base flow characteristics are obtained by the change in the non-dimensionalized injection impulse. The results obtained through the present study show that there is an optimum bleed condition for all base bleed grains tested. That optimum is dependent on the temperature of the grain combustion products. The optimum reduces the total drag for 6,9% in the case of air injection at temperature of 300 K and reaches up to 28% in the case of propellant combustion products injection at almost 2500 K. Besides, the increasing of molecular weight has a role no less important than temperature of the combustion products in terms of base drag reduction.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3