Sliding mode controller for four leg shunt active power filter to eliminating zero sequence current, compensating harmonics and reactive power with fixed switching frequency

Author:

Chebabhi Ali1,Fellah Mohammed-Karim1,Benkhoris Mohamed-Fouad2,Kessal Abdelhalim3

Affiliation:

1. Djillali Liabes University of Sidi Bel Abbes, ICEPS Laboratory (Intelligent Control & Electrical Power Systems), Sidi Bel Abbes, Algeria

2. University of Nantes at Saint Nazaire, IREENA Laboratory (Institut de Recherche en Energie Electrique de Nantes Atlantique), Saint Nazaire, France

3. University of Bordj Bou Arreridj, Faculty of Technology, Bordj Bou Arreridj, Algeria

Abstract

In this paper, the four leg inverter controlled by the three dimensional space vector modulation (3D SVM) is used as the shunt active power filter (SAPF) for compensating the three phase four wire electrical network, by using the four leg inverter with 3D SVM advantages to eliminated zero sequence current, fixed switching frequency of inverter switches, and reduced switching losses. This four leg inverter is employed as shunt active power filter to minimizing harmonic currents, reducing magnitude of neutral wire current, eliminating zero sequence current caused by nonlinear single phase loads and compensating reactive power, and a nonlinear sliding mode control technique (SMC) is proposed for harmonic currents and DC bus voltage control to improve the performances of the three phase four wire four leg shunt active power filter based on Synchronous Reference Frame (SRF) theory in the dq0 axes, and to decoupling the four leg SAPF mathematical model.

Publisher

National Library of Serbia

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super-Twisting Sliding Mode Control of Interleaved Boost Converter Based Photovoltaic Applications;2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE);2022-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3