Investigation of olopatadine hydrochloride under stress conditions by hydrophilic interaction liquid chromatography

Author:

Maksic Jelena1,Tumpa Anja2,Popovic Igor3,Jancic-Stojanovic Biljana2

Affiliation:

1. Military Medical Academy, Sector for Pharmacy, Department of Drug Control and Examination, Belgrade

2. Faculty of Pharmacy, Department of Drug Analysis, Belgrade

3. Medicines and Medical Devices Agency of Serbia, Belgrade

Abstract

The purpose of the present research was to conduct stress degradation studies on the olopatadine hydrochloride, an antiallergic drug, using the hydrophilic interaction liquid chromatography (HILIC). HILIC requires the utilization of polar and moderately polar stationary phases and aqueous-organic mobile phase usually containing more than 70% of organic solvent. In this study, olopatadine hydrochloride was subjected to acid and base hydrolysis, oxidation and termolytic degradation in order to estimate its stability under different stress conditions recommended by ICHQ1A (R2) guideline. Degree of degradation was followed by HILIC method. The chromatographic conditions were: column Betasil Cyano (100 mm ? 4.6 mm, 5 mm particle size), mobile phase consisted of acetonitrile and ammonium acetate 5 mM (pH adjusted to 4.50) in ratio 85:15 V/V, flow rate was 1 mL min-1, column temperature was set at 30?C and detection was performed at 257 nm. Results obtained for stress studies indicated that olopatadine hydrochloride underwent transformation under acidic and oxidative (30% w/v hydrogen peroxyde) conditions showing high degree of degradation. Furthermore, it was found that olopatadine hydrochloride is relatively stable when exposed to thermal (60?C) and basic (1 M NaOH) conditions. Therewith, kinetics of degradation reaction was determined with an aim to define the corresponding reaction rate constants and half-lives. Firstly, the order of the reaction was evaluated experimentally using the integral method. Based on the calculated values of the correlation coefficients, it was shown that the acidic, basic and oxidative degradation are the second-order reaction. High stability under basic conditions was achieved on the basis of the great degradation half-life values. Also, it has been verified that acidic degradation is the fastest reaction.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3