Modeling the effect of shrinkage on fluidized bed drying of orthodox broken type tea

Author:

Raveendran K.1,Jayarathna W.A.R.2,Amarasinghe A.D.U.S.2,Botheju W.S.1

Affiliation:

1. Process Technology Division, Tea Research Institute of Sri Lanka, Talawakelle, Sri Lanka

2. Department of Chemical and Process Engineering, University of Moratuwa, Katubedda, Moratuwa, Sri Lanka

Abstract

Fermented tea particles (dhool) are a polydisperse system subject to shrinkage during fluidized bed drying, which is an important process in the production of orthodox broken type tea. The effect of shrinkage on the physical properties and the minimum fluidization velocity were studied. Five different moisture contents of dhool particles were chosen in the range of 3-106 mass% (dry basis) and the changes in particle diameters and particle densities were measured. For each of the moisture contents, the minimum fluidization velocity was found for three different bed loadings using ambient air at 25?C in a fluidized bed with an area of 351?345 mm2. Since the conventional industrial type fluidized bed dryers operate at 124?C, the new correlations among the Archimedes number, Reynolds number at minimum fluidization and dimensionless moisture content were developed using air properties at 124?C. The results were validated for orthodox broken type tea, drying at 124?C, in a fluidized bed dryer with bed loadings in the range of 44.5 to 50.5 kg/m2. The predicted fluidization velocity was found to be in good agreement with the experimental data and the difference was below 10% for most cases.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3