On Weil like functors on flag vector bundles with given length

Author:

Doupovec Miroslav1,Kurek Jan2,Mikulski Włodzimierz3

Affiliation:

1. Institute of Mathematics, Brno University of Technology, FSI VUT Brno, Brno, Czech Republic

2. Institute of Mathematics, Maria Curie Sklodowska University, Lublin, Poland

3. Institute of Mathematics, Jagiellonian University, Cracow, Poland

Abstract

Let ? ? 2 be a fixed natural number. The complete description is given of the product preserving gauge bundle functors F on the category F?VB of flag vector bundles K = (K;K1,...,K?) of length ? in terms of the systems I = (I1,..., I??1) of A-module homomorphisms Ii : Vi+1 ? Vi for Weil algebras A and finite dimensional (over R) A-modules V1,...,V?. The so called iteration problem is investigated. The natural affinors on FK are classified. The gauge-natural operators C lifting ?-flag-linear (i.e. with the flow in F?VB) vector fields X on K to vector fields C(X) on FK are completely described. The concept of the complete lift F ? of a ?-flag-linear semi-basic tangent valued p-form ? on K is introduced. That the complete lift F ? preserves the Fr?licher-Nijenhuis bracket is deduced. The obtained results are applied to study prolongation and torsion of ?-flag-linear connections.

Publisher

National Library of Serbia

Subject

General Mathematics

Reference21 articles.

1. G. N. Bushueva, Weil functors and product preserving functors on the category of parameter dependent manifolds, Russ. Math. 49 (2005), 11-18.

2. M. Doupovec, I. Kolář, Natural affinors on time-dependent Weil bundles, Archivum Mathematicum (Brno) 27 (1991), 205-209.

3. A. Cabras, I. Kolář, Prolongation of tangent valued forms to Weil bundles, Archivum Mathematicum (Brno) 31 (1995), 139-145.

4. A. Cabras, I. Kolář, Flow prolongation of some tangent valued forms, Czechoslovak Math. J. 58 (2008), 493-504.

5. J. Gancarzewicz, I. Kolář, Natural affinors on the extended r-th order tangent bundles, Suppl. Rend. Circ. Mat. Palermo 30 (1993), 95-100.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3