The influence of metallicity on helium and CO core masses in massive stars

Author:

Petrovic Jelena1ORCID

Affiliation:

1. Astronomical Observatory, Belgrade, Serbia

Abstract

We present the results of 58 detailed evolutionary models of massive single stars and close binary systems with the Solar and Small Magellanic Cloud (SMC) metallicity computed with the MESA (Modules for Experiments in Stellar Astrophysics) numerical code. Helium core masses of single stars (30 M? - 75 M?) with metallicities of 0.02 and 0.0021 are in the range of 9.26 M? - 29.56 M? and 11.62 M? - 33.96 M?, respectively. Their carbon-oxygen (CO) core masses are between 5.44 M? and 25.04 M? vs. 8.23 M? and 28.38 M? for the Solar vs. SMC metallicity, accounting for an average difference of 25%. To investigate the influence of metallicity on helium and carbon-oxygen core masses in massive close Case A binary systems, detailed evolutionary models of binary systems in the mass range of 30 M? to 40 M? are calculated. The initial orbital period is set to 3 days and the accretion efficiency to 10%. The helium core mass range for primary stars with lower metallicity is 10.61 - 16.21 M? vs. 7.94 - 11.69 M? for z = 0.02. The resulting CO core masses of primary stars for the SMC metallicity are on average about 50% larger than for the Solar metallicity, so the effect is more prominent than in the case of single stars. The black hole formation limit for primary stars with the SMC metallicity is under 30 M?. While the least massive primary stars with Solar metallicity end up as neutron stars, all primary stars with the SMC metallicity and all secondary stars complete their evolution as black holes. The double compact objects resulting from the presented models are of two types: mixed neutron star-black hole systems (4 models) and double black holes (18 models). We also derive the relation between the final helium core mass and the carbon-oxygen core mass and show that it does not depend on metallicity. We confirm the CO/helium core mass ratio to be larger in binary systems than for single stars.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Astronomy and Astrophysics

Reference24 articles.

1. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, PhRvL, 116, 061102

2. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b, PhRvL, 116, 241103

3. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016c, ApJL, 818, L22

4. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019, PhRvX, 9, 031040

5. Abbott, R., Abbott, T. D., Abraham, S., et al. 2021, PhRvX, 11, 021053

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3