Harmonicity and differential equation of involute of a curve in E3

Author:

Cakir Osman1,Senyurt Suleyman1

Affiliation:

1. Faculty of Arts and Sciences, Department of Mathematics, Ordu University, Ordu, Turkey

Abstract

In this paper, we first give necessary conditions in which we can decide whether a given curve is biharmonic or 1-type harmonic and differential equations characterizing the regular curves. Then we research the Frenet formulas of involute of a unit speed curve by making use of the relations between the involute of a curve and the curve itself. In addition we apply these formulas to define the essential conditions by which one can determine whether the involute of a unit speed curve is biharmonic or 1-type harmonic and then we write differential equations characterizing the involute curve by means of Frenet apparatus of the unit speed curve. Finally we examined the helix as an example to illustrate how the given theorems work.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Involutes of null Cartan curves and their representations in Minkowski 3-space;Soft Computing;2023-06-30

2. Characterizations of Bertrand curve pairs via new Frenet formulas;Sigma Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergisi;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3