Experimental and numerical study of temperature field during hard facing of different carbon steels

Author:

Arsic Dusan1,Ivanovic Ivana2,Sedmak Aleksandar3ORCID,Lazic Mirjana4,Kalaba Dragan5,Cekovic Ivana2,Ratkovic Nada1

Affiliation:

1. Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia

2. Innovation Center, Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia

3. Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia

4. Faculty of Science, University of Kragujevac, Kragujevac, Serbia

5. Faculty of Technical Sciences, University of Priština, Kosovska Mitrovica, Serbia

Abstract

In this research the 3-D transient non-linear thermal analysis of the hard-facing process was performed by using the experimental testing and finite element method. Testing was done at three different carbon steels and the obtained results were compared to one obtained by empirical formulas and welding recommendations. Experimental testing was done on hard faced specimens (plates) with different thickness. Temperatures and temperature cycles was measured by using thermocouples in order to determine maximal temperature and cooling time between 800?C and 500?C. After experimental testing the finite element method analysis was done. The simulations were executed on the open source platform Salome using the open source finite element solver Code Aster. The Gaussian double ellipsoid was selected in order to enable greater possibilities for the calculation of the moving heat source. The numerical results were compared with available experimental and mathematical results.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3