Artificial neural network applied on sintered BaTiO3-ceramic density

Author:

Randjelovic Branislav1,Ribar Srdjan2,Mitic Vojislav3,Markovic Bojana3,Fecht Hans4ORCID,Vlahovic Branislav5ORCID

Affiliation:

1. University of Nis, Faculty of Electronic Engineering, Nis, Serbia + University of K. Mitrovica, Faculty of Teachers Education, Leposavić, Serbia

2. University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

3. University of Nis, Faculty of Electronic Engineering, Nis, Serbia

4. Instititute of Functional Nanosystems, University of Ulm, Ulm, Germany

5. North Carolina Central University (NCCU), Durham, N. Carolina, USA

Abstract

It is very important to determine microstructure parameters of consolidated ceramic samples, because it opens new frontiers for further microelectronics miniaturization and integrations. Therefore, controlling, predicting and designing the ceramic materials? properties are the objectives in ceramic materials consolidating process, within the science of sintering. In order to calculate the precise values of desired microstructure parameter at the level of the grains? coating layers based on the measurements on the bulk samples, we applied the artificial neural networks, as a powerful mathematical tool for mapping input-output data. Input signals are propagated forward, as well as the adjustable coefficients that contribute the calculated output signal, denoted as error, which is propagated backwards and replaced by examined parameter. In our previous research, we used neural networks to calculate different electrophysical parameters at the nano level of the grain boundary, like relative capacitance, breakdown voltage or tangent loss, and now we extend the research on sintered material?s density calculation. Errors on the network output were substituted by different consolidated samples density values measured on the bulk, thus enabling the calculation of precise material?s density values between the layers. We performed the neural network theoretical experiments for different number of neurons in hidden layers, according to experimental ceramics material?s density of ?=5.4x103[kg/m3], but it opens the possibility for neural networks application within other density values, as well.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3