A novel technique to synthesis of tenorite (CuO) nanoparticles from low concentration CuSO4 solution

Author:

Darezereshki E.1,Bakhtiari F.2

Affiliation:

1. Energy & Environmental Engineering Research Center, Shahid Bahonar University of Kerman, Iran

2. Mineral Industries Research Centre, Shahid Bahonar University of Kerman, Iran + Department of Chemical Engineering, Shahid Bahonar University of Kerman, Iran

Abstract

In this study CuO nanoparticles were prepared via direct thermal decomposition method using basic copper sulphates as wet chemically synthesized precursor which was calcined in air at 750?C for 2h. Samples were characterized by thermogravimetric (TG-DSC), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), infrared spectrum (IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD, EDS, and IR results indicated that the synthesized CuO particles were pure. The SEM and TEM results showed that the CuO nanoparticles were of approximate spherical shape, and 170?5 nm in size. Using this method, Cuo nanoparticles could be produced without using organic solvent, expensive raw materials, and complicated equipment.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3