Random mutagenesis and process optimization of bacterial co-culture for hyperproduction of 1,4-α-D-glucan glucanohydrolase using submerged fermentation

Author:

Abdullah Roheena1,Kiran Samra1,Iqtedar Mehwish1,Kaleem Afshan1,Saleem Faiza1,Iftikhar Tehreema2,Cheema Javaria3,Naz Shagufta1

Affiliation:

1. Lahore College for Women University, Department of Biotechnology, Lahore, Pakistan

2. Lahore College for Women University, Department of Botany, Lahore, Pakistan

3. Lahore College for Women University, Department of Biotechnology, Lahore, Pakistan + University of Sialkot, Department of Biotechnology, Pakistan

Abstract

The exponential increase in the application of 1,4-?-D-glucan glucanohydrolase (GGH) in various fields has placed stress and demand in both qualitative improvement and quantitative enhancement through strain improvement. In the present work, Bacillus subtilis LCBT-15 and Bacillus amyloliquefaciens LCBT-20 were subjected to physical as well as chemical mutagenesis for improving the GGH production potential. Applications of the UV light and ethidium bromide did not cause a significant increase in the enzyme production. However, Ethyl methane sulphonate (EMS) treated co-culture 10 gave 1.3-fold increase in the GGH production, in contrast to the wild co-culture. Different physicochemical parameters including fermentation media, rate of fermentation, temperature, pH, nitrogen and carbon sources and surfactants were also investigated. The M7 medium composition was optimized for GGH production after 48h of incubation at 37?C and pH 6. The optimum inoculum size was 3.5 ml (1x106 cells/ml) in 50 ml of medium. The best carbon and nitrogen sources were lactose (2.5 %); ammonium chloride (1.75 %) and beef extract (1 %), respectively. Optimal GGH production (287 U/ml) was obtained when the medium was supplemented with 0.05% Tween 80. The novelty of this work was exploration of the synergistic phenomena of mutant bacterial co-culture for the enhancement of GGH production.

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3