In vitro propagation of black cumin (Nıgella satıva L.) plants

Author:

Uysal Hüseyin1

Affiliation:

1. Aydın Adnan Menderes University, Agricultural Faculty, Department of Agricultural Biotechnology, Aydın, Turkey

Abstract

This study was carried out to determine in vitro development using Black cumin leaf and stem explants. ?ameli black cumin variety was used as plant material. Five different nutrient mediums (1. LS2.5, 2. MS, 3. MS + 0.5 mg.l-1 IAA, 4. MS + 0.5 mg.l-1 BAP, 5. MS + 0.5 mg.l-1 IAA + 0.5 mg.l-1 BAP) containing 30 g sugar were used in this study. As a result of the research, 100% callus formation was detected in the stem explants cultured in the number 1 and number 5 mediums. These were followed by stem explants cultured in medium 4 with a success rate of 96%. Of this rate, 66% was shoot formation, and 30% was callus formation. Direct shoot regeneration was performed only on stem explants cultured in mediums 4 and 3, with a 66% success rate in medium four and a 36% success rate in medium 3. The highest plant regenerations from calluses were gained from stem explants (273.3%) in medium 4, followed by calluses gained from leaf explants (262.5%) in the same medium. These were followed by cultures in medium 3, with calluses derived from stem explants (255%) and leaf explants (150%). No plant regeneration was determined from calluses gained in the medium 1. Thus it is evident that high auxin content and auxin-cytokinin balanced mediums encouraged callus formation in the black cumin plants. The addition of only IAA or BAP to the medium promoted shoot formation in the stem explants, but direct shoot regeneration was not thereby achieved from the leaf explants. These results show that, for in vitro clonal propagation studies done on black cumin plants, a high auxin containing medium is preferable if the aim is callus formation. If the aim is direct shoot regeneration, BAP or other cytokinin-containing medium is preferred.

Publisher

National Library of Serbia

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3