Physiological and gene expression changes during imbibition in maize seeds under low temperature conditions

Author:

Bozic Manja1ORCID,Stanojevic Aleksandra2,Markovic Ksenija1ORCID,Ignjatovic-Micic Dragana1ORCID,Nikolic Dragana3ORCID,Milivojevic Marija1ORCID,Nikolic Ana1

Affiliation:

1. Maize Research Institute „Zemun Polje“, Belgrade, Serbia

2. Faculty of Biology, University of Belgrade, Belgrade, Serbia

3. Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia

Abstract

Maize is one of the most important crop species worldwide, but also extremely susceptible to the effects of increasingly higher temperatures and drought during the summer and its flowering and grain filling stage. Different strategies are being utilized to ensure a satisfying yield potential and quality even in the extremely unfavourable environmental conditions, which are the result of climate change. Some of them are cropping pattern changes and sowing alterations, including earlier sowing. Since this implies the exposure to suboptimal temperatures during early developmental stages, it leads to a demand for developing maize lines tolerant to low temperatures during these stages. This research focuses on the first phase of germination, imbibition. Maize tolerance to low temperatures is a complex trait that includes different mechanisms and strategies that all work together to ensure adaptation and survival, such as cell membrane changes, antioxidative system activation, etc. Additionally, the low temperature response of different maize inbreds varies substantially, so recognizing the different ways in which they respond to low temperatures during imbibition and other earlier stages of development is crucial. To accomplish this, seeds of two maize inbred lines of contrasting susceptibility to low temperatures were selected and exposed to control (20? C) and low temperature (8?C) conditions during the first 24h of imbition and then further analyzed to assess their response. This included germination and tetrazolium assays; ascertaining membrane integrity by evaluating cell leakage and lipid peroxidation; determining the antioxidative capacity by assessing superoxide dismutase (SOD) and catalase (CAT) activity; and expression analysis of four genes included in the low temperature response (gibberellin insensitive dwarf 1 gibberellin receptor, gid1; fatty acid desaturases 2 and 6, fad2 and fad6; plastid-lipid-associated 2 protein, pap2). The results showed that, while there is not a significant difference in their germination rate, they differ in their survival rate, with more seeds of the tolerant genotype surviving the low temperature period. Significant differences between them were found in cell leakage (p<0,01), as well as gid1(p<0,05) and fad6 (p<0,05) gene expression assays. The present research brings light to our understanding of the effect of low temperatures on the first germination stage, - imbibition. It highlights the importance of choosing the right inbreds for earlier sowing and points to certain routes that could be taken for improving and accelerating the breeding process for low temperature tolerance.

Publisher

National Library of Serbia

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3