Neurological manifestations in Pakistani lysosomal storage disorders patients and molecular characterization of Gaucher disease

Author:

Gul Rutaba1,Firasat Sabika1,Hussain Mulazim2,Tufail Muhammad1,Ahmad Waheed1,Afshan Kiran1

Affiliation:

1. Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan

2. The Children Hospital, Pakistan Institute of Medical Sciences, Islamabad, Pakistan

Abstract

Lysosomal storage disorders (LSDs) are a large group of inborn errors of metabolism each caused by genetic mutations of a particular lysosomal protein encoding gene. These inherited conditions are characterized by lysosomal dysfunction with wide variety of organ impact sometimes organ failure with growing age. Neurological complications in LSD cases range from severe neurodegenerations in 70% cases to mild symptoms or absence of neuropathy in others. Each LSD is monogenic but heterogeneous from a molecular standpoint with a large number of mutations described in the respective gene. Some mutations are particular to specific populations, reflecting consequences of founder effect. Present study aimed to access the demographic and clinical profiles of forty-five LSD affected families enrolled during January 2018 to December 2019 at local hospitals to find out neurological symptoms in Pakistani LSD cases. Furthermore, molecular genetic analysis of Gaucher?s disease affected families was performed to unveil underlying disease causing mutation/s. Neurological manifestations were present in twenty-eight families including eleven Mucopolysaccharidosis-1 (MPS-I), four Gaucher?s disease (GD) and all MPS-II, MPS-III, Niemann-Pick, Griscelli and Chediak-Higashi cases. Neurological involvement was not found in eight MPS-I, one GD, all MPS-IV and Pycnodysostosis affected families. Screening of GBA gene in GD families revealed a reported missense mutation p.L483P in all analyzed families. Clinical heterogeneity of MPS-1 and GD is evident from literature however mutational analysis of all enrolled GD families depicted segregation of a reported missense variant p.L483P of GBA gene with disease phenotype in all families. Our findings highlight importance of homeostatic role of lysosomes in neuronal development as twenty eight out of forty families had neurological manifestations. Furthermore, identification of same mutation in GD patients with or without neuronal involvement may be related to some unknown differences in the expression of genetic modifiers or exposure to environmental triggers.

Publisher

National Library of Serbia

Subject

Plant Science,Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3