Molecular identification and genetic diversity in Hypericum L.: A high value medicinal plant using RAPD markers markers

Author:

Bi Dezhong1,Chen Dan2,Khayatnezhad Majid3,Hashjin Zohreh4,Li Zifa2,Ma Yuexiang1

Affiliation:

1. School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China

2. Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan, China

3. Department of Environmental Sciences and Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

4. Department of Horticultural Science, Faculty of agriculture, University of Tabriz, Tabriz, Iran

Abstract

Genus Hypericum (Guttiferae, Hypericoideae) is perennial, belonging to the Hypericaceae family, having 484 species in forms of trees, shrubs, and herbs, distributed in 36 taxonomic sections. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Hypericum genetic diversity. Therefore, we collected and analyzed six species from five provinces of Iran regions. Overall, seventy plant specimens were collected. Our aims were 1) to assess genetic diversity among Hypericum species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa. We showed significant differences in quantitative morphological characters in plant species. H. dogonbadanicum depicted unbiased expected heterozygosity (UHe) in the range of 0.10. Shannon information was high (0.32) in H. perforaturm. H. dogonbadanicum showed the lowest value, 0.17. The observed number of alleles (Na) ranged from 0.22 to 0.53 in H. dogonbadanicum and H. elongaturn. Gene flow (Nm) was relatively low (0.87) in Hypericum. The Mantel test showed correlation (r = 0.45, p=0.0001) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Hypericum species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Hypericum species.

Publisher

National Library of Serbia

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3