Cloning and molecular characterization of two novel LMW-m type glutenin genes from Triticum spelta L.

Author:

Wang Ruomei1,Zhang Junwei1,Luo Fei1,Liu Nannan1,Prodanovic Slaven2ORCID,Yan Yueming3

Affiliation:

1. College of Life Science, Capital Normal University, Beijing, China

2. Faculty of Agriculture, University of Belgrade, Belgrade, Serbia

3. College of Life Science, Capital Normal University, Beijing, China + Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, China

Abstract

Spelt wheat (Triticum spelta L., 2n=6x=42, AABBDD), as a hexaploid wheat species, is important sources of food and feed in Europe. It also serves as an important genetic resource for improvement of wheat quality and resistance. In this study, two novel m-type low molecularglutenin subunit (LMW-GS) genes, named as TsLMW-m1 and TsLMW-m2 were cloned by allelic specific polymerase chain reaction (AS-PCR)from German spelt wheat cultivars Rochbergers fruher Dinke and Schwabenkorn, respectively. The complete open reading frames (ORFs) of both genes contained 873 bp encoding 290 amino acid residues, and had typical LMW-GS structural features. Two same deletions with 24 bp at the position of 707-730 bp were present in both genes, while TsLMW-m1 had two nonsynonymous single-nucleotide polymorphism (SNP) variations at the positions of 434 bp (C-A transversion) and 857 bp (G-A transition). Phylogenic analysis revealed that both LMW-m genes were closely related to those from wheat A genome, suggesting that both subunits are encoded by the Glu-A3 locus. Secondary structure prediction showed that TsLMW-m1 and TsLMW-m2 subunits had more ?-helices than other wheat LMW-GS including superior quality subunit EU369717, which would benefit to form superior gluten structures and dough properties. The authenticity and expression activity of TsLMW-m1 and TsLMW-m2 genes were verified by prokaryotic expression in E. coli. Our results indicated that two newly cloned TsLMW-m genes could have potential values for wheat quality improvement.

Publisher

National Library of Serbia

Subject

Plant Science,Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3