Optimization of synchronous reluctance motor based on radial basis network

Author:

Nik Amirhossein1,Faiz Jawad1

Affiliation:

1. Centre of Excellent on Applied Electromagnetic Systems, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

This paper presents surrogate-model based optimization for synchronous reluctance motor (SynRm) with transversally laminated rotor. A radial basis function (RBF) model with 12 input variables and three outputs is first trained. A dataset is obtained using finite element method to estimate parameters of RBF model. By building RBF model, the RBF network can predicts the outputs of the SynRm with good accuracy Using non-dominated sorting genetic algorithm (NSGA II), pareto front is obtained. The SynRm is designed to maximize the maximum developed torque and power factor of the motor with constrained torque ripple.

Publisher

National Library of Serbia

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Financial Risk Prediction Method of Listed Companies Based on GA-RBF Neural Network;2022 6th International Symposium on Computer Science and Intelligent Control (ISCSIC);2022-11

2. Optimization of a High-Speed Synchronous Reluctance Machine's Rotor Topology;2021 International Conference on Electrotechnical Complexes and Systems (ICOECS);2021-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3