Analysis of unsupervised dimensionality reduction techniques

Author:

Kumar Aswani1

Affiliation:

1. Networks and Information Security Division, School of Information Technology and Engineering, VIT University, Vellore, India

Abstract

Domains such as text, images etc contain large amounts of redundancies and ambiguities among the attributes which result in considerable noise effects (i.e. the data is high dimension). Retrieving the data from high dimensional datasets is a big challenge. Dimensionality reduction techniques have been a successful avenue for automatically extracting the latent concepts by removing the noise and reducing the complexity in processing the high dimensional data. In this paper we conduct a systematic study on comparing the unsupervised dimensionality reduction techniques for text retrieval task. We analyze these techniques from the view of complexity, approximation error and retrieval quality with experiments on four testing document collections.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reducing redundancy in the bottleneck representation of autoencoders;Pattern Recognition Letters;2024-02

2. Survey on Multi-Task Learning in Smart Transportation;IEEE Access;2024

3. Reducing Complexity: A Comparative Analysis of Dimensionality-Reduction Techniques;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

4. Optimizing Feature Reduction and Selection Techniques for Surface Electromyography;2023 3rd International Conference on Digital Futures and Transformative Technologies (ICoDT2);2023-10-03

5. Knowledge Discovery in a Recommender System: The Matrix Factorization Approach;Journal of Information & Knowledge Management;2022-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3