Synthesis and characterization of poly(N-isopropylmethacrylamide-co-N-isopropylacrylamide) copolymers

Author:

Urosevic Maja1,Nikolic Ljubisa1,Ilic-Stojanovic Snezana1ORCID,Zdravkovic Aleksandar2ORCID,Nikolic Vesna1

Affiliation:

1. Faculty of Technology, University of Niš, Leskovac, Serbia

2. Vocational High School for Technology and Art, Leskovac, Serbia

Abstract

Copolymeric hydrogels of poly(N-isopropylmethacrylamide-co-N-isopropylacrylamide), p(NIPMAM/NIPAM), are synthesized by radical polymerization of N-isopropylmethacryl-amide (NIPMAM) and N-isopropylacrylamide (NIPAM) monomers by using the cross-linker ethylen glycol dimethacrylate (EGDM). The synthesized copolymeric p(NIPMAM/NIPAM) hydrogels, starting monomers and the cross-linker were structurally characterized by using Fourier transform infrared spectroscopy (FTIR). The amounts of residual reactants in the synthesized hydrogels were determined by high-pressure liquid chromatography (HPLC). Swelling of p(NIPMAM/NIPAM) hydrogels was investigated in relation to the temperature and pH value of the solution. The obtained values of residual monomer quantities are within acceptable limits and in the range from 2.69 to 5.25 mg g-1 for NIPMAM and 14.55 to 30.80 mg g-1 for NIPAM. The synthesized p(NIPMAM/NIPAM) hydrogels are negatively thermosensitive. The most common mechanisms of transport of a swelling solution in p(NIPMAM/NIPAM) hydrogels are polymer chain relaxation, (Case III), and the anomalous type of diffusion (non-Fickian diffusion). The maximal equilibrium swelling degree of 51.19 was reached by the p(NIPMAM/NIPAM) hydrogel with 1.5 mol% of EGDM at the temperature of 25?C and pH 4, whereas the lowest one of 0.98 was exhibited by the hydrogel with 3 mol% of EGDM at the temperature of 80?C and pH 7. Due to their low content of residual reactants and a satisfactory degree of swelling at various pH values, synthesized p(NIPMAM/NIPAM) hydrogels can be applied as carriers for the controlled release of pharmaceutically active substances.

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3