Shape optimization of inlet header of micro-channel heat sink using surrogate model combined with genetic algorithm

Author:

Shao Huaishuang1,Wang Zongyi1,Liao Min1,Li Chao1,Liang Zhiyuan1,Zhao Qinxin1

Affiliation:

1. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

A lot of work has documented the significance of fluid-flow uniformity on the thermal-hydraulic performance of the micro-channel heat sink. The purpose of this work is to optimize the shape of inlet/outlet headers of a micro-channel heat sink to improve the flow distribution characteristics using the back propagation neural networks combined with the genetic algorithm as the surrogate model. The slanted edge of the inlet header is defined as the quadratic parabola instead of straight line. Meanwhile, the shape of the parabola is optimally designed for different flow rates. The 40 training sample points and six testing sample points on different geometry structures of inlet header are designed by the Latin hypercube sampling method. The 3-D CFD calculation is performed for all models. The objective function is defined as the non-uniformity of the fluid-flow. It is found that the prediction of the genetic algorithm back propagation for the fluid-flow distribution is capable of obtaining objective function values within the designed space. Through the optimizations, the non-uniformity of the optimal inlet header structure can be reduced by 52.43% to 33.17% for the inlet velocity of 0.05 m/s to 0.1 m/s, respectively, compared to that of the original design. The results demonstrate that the parabolic treatment for the slanted edge of the inlet header as well as structural optimization can greatly improve the flow uniformity of the micro-channel heat sink.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3