Nanofluids (CuO & TiO2) - water as heat transfer fluid in a thermal energy storage system for applications of solar heating: An experimental study

Author:

Kondakrindi Krishna1,Reddigari Meenakshi2,Konireddy Hemachandra3,Maheswari Uma4

Affiliation:

1. Mechanical Engineering Department, BITS, Kurnool, A.P, India

2. Mechanical Engineering Department, GPREC, Kurnool, A.P, India

3. Mechanical Engineering Department, JNTUA, Ananthapuramu, A.P, India

4. Mechanical Engineering Department, SVCET, Chittoor, A.P, India

Abstract

The present work aims to exploit the thermal performance of a packed bed of combined sensible and latent heat of storage unit with an integrated solar heat source. A cylindrical insulated storage tank in the thermal energy storage (TES) unit is filled with spherical capsules separately which contains PCM as paraffin wax and stearic acid. The PCM usage has the benefits that it can be used as a thermal management tool and it reduces the cost and size of the system as it offers higher isothermal behavior and thermal storage capacity. The thermal conductivity of heat transfer fluid (HTF) can be enhanced by using nanoparticles mixed in water. Nanofluids are the more efficient fluids for the applications of heat-transfer. The water based nanofluids are used to transfer heat between the solar collector and storage tank which is a sensible heat storage material. The HTF materials are varied and experimental trials have been conducted separately. Experimentation was carried out first by considering only water as HTF and is extended by adding water with one of the nanomaterials i.e. The TiO2 and CuO, each in 3 HTF vol.% as 0.2, 0.5, and 0.8. The variable source of heat supply considered is solar flat plate collector. The study was transpired by varying the flow-rates of nanofluids as 2.0, 4.0, and 6.0 Lpm. The novelty of this work is to envisage the enhancement of heat transfer and to study the effects on the melting time of the PCM of these fluids which were carried out. The performance parameters like charging time and system efficiency, instantaneous stored heat, cumulative stored heat were studied for the different HTF and for the PCM-paraffin and stearic acid. The batch wise process experiments for discharging were carried out to recover the heat stored, and the results are presented.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3