Numerical simulation of O2/CO2 combustion in decomposition furnace

Author:

Wang Bo1,Kao Hongtao1

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China

Abstract

The cement industry has become the second largest source of CO2 and NOx emissions after the power industry, it is imperative to reduce CO2 and NOx emissions. O2/CO2 combustion technology can achieve CO2 enrichment and NOx reduction. As a result, its application possibilities are bright. In this article, a TTF-type decomposition furnace serves as the research object for a CFD simulation. In addition, the effects of pulverized coal combined O2/N2 and pulverized coal mixed O2/CO2 combustion on the velocity field, temperature field, material component, and NOx concentration distribution in the furnace are investigated concerning the changes of kinetic parameters of CaCO3 decomposition under different working conditions. Compared with the O2/N2 atmosphere, the temperature distribution in the high temperature zone of the decomposition furnace is more uniform under the O2/CO2 atmosphere. The temperature range is reduced in the area of extremely high temperatures. The NOx concentration at the decomposition furnace exit is reduced by 37%. The high concentration of CO2 at the output can be recycled and reused to reduce the greenhouse effect effectively. In addition, the high CO2 partial pressure increases the exit temperature by 111 K, doubles the O2 concentration, but decreases the raw meal decomposition rate from 95.9-82.2%. The process parameters must be improved to adapt to the O2/CO2 combustion technology.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3