Mechanical activation as sintering pre-treatment of talc for steatite ceramics

Author:

Terzic A.1,Andric Lj.2,Stojanovic J.2,Obradovic N.3,Kostovic M.4

Affiliation:

1. Institute for Materials Testing, Belgrade

2. Institute for Technology of Nuclear and other Raw Mineral Materials, Belgrade

3. Serbian Academy of Science and Art, Institute of Technical Sciences, Belgrade

4. Faculty of Mining and Geology, Belgrade

Abstract

The effect of vibratory mill induced mechanical activation on the change of the particle size, crystallinity and the phase transformations of the minerals present in the activated material, was studied with the purpose of decreasing of the sintering temperature of talc (Mg3Si4O10(OH)2) as raw material which is the basic component of the steatite ceramics. The aims of the conducted investigation were, also, increasing of the reactivity of the comminuted raw material and establishing of the optimal activation period. The properties of the activated talc induced by mechanical force were expressed in form of the grain inertia change which was measured by means of automatic grain counter. Mechanically activated grains are the most convenient mineral form for physical concentration since the energy change of the mill-material system is recorded on them. The effect of dry grinding on the structure, particle size and shape of talc was studied by means of XRD, DTA and SEM/EDS methods. Activation of talc produced an increase of the starting surface area value progressively from 4.5 m2/g up to a maximum of 108.5 m2/g achieved at 30 min. A subsequent decrease of rate of surface area change and the rate of size reduction were observed following the prolonged grinding. Talc activated in vibratory mill for optimal 30 min showed properties which positively influence the decrease of sintering temperature and the increase of the sintering rate of steatite ceramics.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3