Investigation of thermal behavior and fluid motion in DC magnetohydrodynamic pumps

Author:

Kiyasatfar Mehdi1,Pourmahmoud Nader1,Golzan Maqsood2,Mirzaee Iraj1

Affiliation:

1. CFD Research center, Mechanical Eng. Dept., Urmia University, West Azerbaijan, Iran

2. Physics Department faculty of science, Urmia University, West Azerbaijan, Iran

Abstract

Motivated by increasingly being used MHD micropumps for pumping biological and chemical specimens, this study presents a simplified MHD flow model based upon steady state, incompressible and fully developed laminar flow theory in rectangular channel to offer the characteristics of MHD pumps for prediction of pumping performance in MHD flow. The nonlinear governing equations of motion and energy including viscous and Joule dissipation are solved numerically for velocity and temperature distributions. To aim this goal a finite difference approximation based code is developed and utilized. In addition, the effects of magnetic flux density, applied electric current and channel size on flow velocity field as well as thermal behavior are investigated in various working medium with different physical properties. Also the entropy generation rate is discussed. The simulation results are in good agreement with experimental data from literature.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3