Reverse engineering models of software interfaces

Author:

Bera Debjyoti1,Schuts Mathijs2,Hooman Jozef3,Kurtev Ivan4

Affiliation:

1. ESI (TNO), The Netherlands

2. Philips, Best, The Netherlands

3. ESI (TNO) and Radboud University, The Netherlands

4. Altran and Eindhoven University of Technology (TU/e), The Netherlands

Abstract

Cyber-physical systems consist of many hardware and software components. Over the lifetime of these systems their components are often replaced or updated. To avoid integration problems, formal specifications of component interface behavior are crucial. Such a formal specification captures not only the set of provided operations but also the order of using them and the constraints on their timing behavior. Usually the order of operations are expressed in terms of a state machine. For new components such a formal specification can be derived from requirements. However, for legacy components such interface descriptions are usually not available. So they have to be reverse engineered from existing event logs and source code. This costs a lot of time and does not scale very well. To improve the efficiency of this process, we present a passive learning technique for interface models inspired by process mining techniques. The approach is based on representing causal relations between events present in an event log and their timing information as a timed-causal graph. The graph is further processed and eventually transformed into a state machine and a set of timing constraints. Compared to other approaches in literature which focus on the general problem of inferring state-based behavior, we exploit patterns of client-server interactions in event logs.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3