Affiliation:
1. Henan University of Science and Technology, College of Agricultural Equipment Engineering, Xiyuan Road, Luoyang, China
Abstract
The combination of laser deep penetration welding and hydraulic bulging is the most advanced production technology of honeycomb plate heat exchanger in the world. The micro-shape and heat transfer effect of the heat exchanger of honeycomb plate are mainly determined by the distribution mode of welding spot, weld shape and welding point arrangement. Therefore, the important principle of the honeycomb plate heat exchanger processing is to improve the pressure as much as possible to form turbulence while ensuring the welding quality. In the present experimental work, the effect of different weld shape and weld distribution of honeycomb plate heat exchanger produced by 06cr19n10 plate using hydraulic bulging and laser deep penetration welding on hydraulic bulging effect was studied carefully. The results showed that the optimal arrangement method is the equilateral triangle. The welding process parameters were optimized to increase the welding strength. The results showed that when the welding power was 2.1 kW, the bonding strength of the weld was the highest, at 52.70 kN. When the welding power was 2.2 kW and the gap between the welding points was 30 mm, the tensile strength of the honeycomb plate was the best, at 19.0 MPa. The results of this paper provide experimental support for industrial production of honeycomb plate heat exchanger.
Publisher
National Library of Serbia
Subject
Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献