Analytical computation technique for calculation the effective geometrical solid angle and the efficiency of cubic scintillation crystal with side cylindrical hole

Author:

Badawi Mohamed1,Thabet Abouzeid2

Affiliation:

1. Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon + Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt

2. Department of Biomedical Equipment Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Egypt

Abstract

In the gamma-ray spectroscopy field, the radiometric examination for small quantities of natural samples is extremely significant. Therefore, the gamma-ray spectrometry calibration process must be prepared with good precision for several energies, matrices of sources or samples, and source-to-detector shapes. This manuscript considers a new uncomplicated analytical computation technique to calculate the effective geometrical solid angle and the efficiency of cubic scintillation crystal with a side cylindrical hole. The computations can be done by using a simple method, with a few essential limitations, that describes radioactive point sources located inside the side cylindrical hole and a high-efficiency cubic NaI(Tl) detector, come together with a low background as well. The technique stands on a trouble-free solid angle analytical formula for the detection system, using an accurate relation for the detector cavity, united with rough formulas controlling the interactions in the gamma-ray source and the materials introduced in between the source and the gamma-ray spectrometry. This new technique is not restricted to certain sources, because several source shapes can correspond to a homogeneous huge number of point sources and the detector geometry can be represented as a set of border points. The technique simply can be useful to obtain the full-energy peak efficiency in the future, challenging developments for low-energy gamma-ray spectroscopy.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3