Lung sound classification using wavelet transform and entropy to detect lung abnormality

Author:

Rizal Achmad1,Puspitasari Attika1

Affiliation:

1. School of Electrical Engineering, Telkom University, Indonesia

Abstract

Lung sounds provide essential information about the health of the lungs and respiratory tract. They have unique and distinguishable patterns associated with the abnormalities in these organs. Many studies attempted to develop various methods to classify lung sounds automatically. Wavelet transform is one of the approaches widely utilized for physiological signal analysis. Commonly, wavelet in feature extraction is used to break down the lung sounds into several sub-bands before calculating some parameters. This study used five lung sound classes obtained from various sources. Furthermore, the wavelet analysis process was carried out using Discrete Wavelet Transform (DWT) and Wavelet Package Decomposition (WPD) analysis and entropy calculation as feature extraction. In the DWT process, the highest accuracy obtained was 97.98% using Permutation Entropy (PE), Renyi Entropy (RE), and Spectral Entropy (SEN). In WPD, the best accuracy achieved is 98.99 % when 8 sub-bands and RE are used. These results are relatively competitive compared with previous studies using the wavelet method with the same datasets.

Publisher

National Library of Serbia

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning-Based Classification of Pulmonary Diseases through Real-Time Lung Sounds;International Journal of Engineering and Technology Innovation;2023-12-29

2. Bayesian optimized GoogLeNet based respiratory signal prediction model from empirically decomposed gammatone visualization;Biomedical Signal Processing and Control;2023-09

3. Classification of Rice varieties using DMLP-PCA inspired features with MVE Classifier;2022 1st Zimbabwe Conference of Information and Communication Technologies (ZCICT);2022-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3