Effect of regular thicknesses on the microstructural and quantitative analysis for a hypo-eutectic ductile iron alloyed with Ni and V

Author:

Colin-García E.1,Sánchez-Alvarado R.G.1,Cruz-Ramírez A.2,Suarez-Rosales M.A.3,Portuguez-Pardo L.1,Jiménez-Lugos J.C.1

Affiliation:

1. Instituto Politécnico Nacional - ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, Ciudad de México, México

2. Instituto Politécnico Nacional - UPIIH, Departamento de Ciencias Básicas, Hidalgo, México

3. Universidad Autónoma Metropolitana - UAM-Azcapotzalco, Departamento de Materiales, Ciudad de México, México

Abstract

Ductile iron contains free graphite nodules within the metallic matrix, which generally consists of ferrite and pearlite in the as-cast condition. The casting thicknesses have a great influence on the size, shape, and quantity of the microconstituents of the metallic matrix and the graphite nodules and thus on the mechanical properties. In this study the cooling rate (caused by the casting thicknesses) on the metallic matrix and the nodular characteristics of a low alloyed ductile iron with 0.8 %Ni and 0.15 %V was investigated. The ductile iron was produced in a sandwich process with ladle inoculation. Six plates of different thicknesses, from 4.3 mm to 25.4 mm, were produced in a green sand mold. The microstructural characterization was performed by optical microscopy (OM), scanning electron microscopy (SEM), and the image J software using different quantification methods. The area method to determine the average nodule size and nodular structure provided more reliable results than the perimeter and total particle count methods. The hardness test on the Rockwell C scale was used for the mechanical characterization. The low content of vanadium added to the ductile cast iron had a negligible effect on the solidification pattern, which was mainly due to the graphitizing impact of the nickel and silicon addition. The results of the microstructural characteristics are therefore primarily due to the cooling rate, which is determined by the casting thickness. The thinnest casting section significantly improved the number of nodules (414 Nod/mm2), sphericity (0.96), and nodularity (96.21 %). In contrast, the thickest casting plate obtained the highest volume fraction of graphite (10.85 %) and the lowest volume fraction of unwanted particles (0.36 %). The high cooling rate in the thinnest casting plate resulted in the highest hardness of 31.56 HRC due to the higher volume fraction of the pearlite (33.7 %) and carbides (4.5 %).

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3