Internet of things temperature control of indirect dual tank heat storage system in solar photo-thermal power plant

Author:

Tian Feng1

Affiliation:

1. School of Computer and Information Engineering, Guizhou university of Commerce, Guiyang, Guizhou, China

Abstract

In order to study the temperature control of the IoT for indirect dual tank heat storage systems in solar thermal power plants, the author proposes a refined design method for heat storage systems. Through CFD software FLUENT analysis, the author proposes a temperature control scheme for storage tanks in solar thermal power plants and applies this method to the temperature control and salt injection processes of actual commercial power plants. The refined design of a systematic heat storage system mainly involves precise calculation of molten salt content and refined analysis of overall and local stresses in the storage tank. For molten salt storage tanks with a diameter of about 30 m, every 1 cm of liquid level design error will result in economic losses of tens of thousands of Yuan. In addition, the design process of storage tanks should fully consider temperature control, salt injection, and some special operating conditions during operation. By numerically simulating the flow process of flue gas and molten salt in the storage tank and the real-time wall temperature of the storage tank, a temperature control scheme that does not exceed the maximum allowable wall temperature difference of the storage tank is obtained to reduce thermal stress during the temperature control process of the storage tank, reduce the risk and failure rate of the storage tank. The temperature control scheme has achieved good results in practical projects.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3