Thermal storage performance analysis of building envelope based on big data sensor network

Author:

Hu Xiji1,Li Xingquan1,Zuo Mingwei2

Affiliation:

1. Department of Architectural Engineering, Hebei Petroleum University of Technology, Chengde, Hebei, China

2. Party and Government Office, Hebei Petroleum University of Technology, Chengde, Hebei, China

Abstract

In order to understand the thermal storage performance analysis of building envelope, the author proposes a research on thermal storage performance analysis of building envelope based on Big data sensor network. The author first compares and analyzes the thermal storage performance parameter systems of different theoretical methods, and determines the key characterization parameters of thermal storage performance under different working conditions based on the analysis of the thermal storage process. Second, in order to compare and verify the measured and simulated indoor temperature of the building, two groups of buildings with identical exterior wall insulation performance and distinct thermal storage performance were chosen. Three distinct thermal storage levels of the building?s exterior walls were used to simulate and analyze the internal surface temperature, heat flux density, and building cooling and heating load. Summer night ventilation was used to investigate the effect of ventilation volume on building cooling loads. In the end, a provincial office building was chosen as the research subject. The structure comprises of two stories, one underground and two over the ground, with a north hub point of 180?. The investigation object is a two-story room. The trial results demonstrate that the deliberate outcomes are in great concurrence with the mimicked results. For the district of the region, under a similar protection execution of the nook structure, the inner surface temperature of the weighty construction outside wall is higher in winter, lower in summer, with a higher intensity load in winter and a lower cooling load in summer. The proper air changes each hour of building night ventilation is 16 ach, and the effect on the cooling heap of weighty structures is huge. Demonstrated the precision of the reproduction technique and model.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3