A best proximity point theorem for C-class-proximal non-self mappings and applications to an integro-differential system of equations

Author:

Ayari M.I.1,Aydi H.2,Hammouda H.3

Affiliation:

1. Math and Sciences Department, Community College, Qatar, Doha, Qatar + Carthage University, Institut National Des Sciences Appliquées et de Technologie, de Tunis, Tunis, Tunisie

2. Université de Sousse, Institut Supérieur d’Informatique et des Techniques de Communication, H. Sousse, Tunisia + China Medical University Hospital, China Medical University, Taichung, Taiwan

3. Université de Monastir, Institut Préparatoire des Etudes d’Ingénieurs de Monastir, Monastir, Tunisia

Abstract

In this paper, we propose a best proximity point theorem for a novel class of non-self-mappings by using the definition of a pair (F , h) of upper class of type II and the concept of C-class functions. Several consequences (including the case of self-mappings) of our obtained results are suggested. We support our obtained results by concrete examples. In the end, we consider an integro-differential system of equations. We ensure the existence of an optimal solution, which turns to be an exact solution of the system when boundary conditions are equal.

Publisher

National Library of Serbia

Reference37 articles.

1. S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3 (1922), 133-181.

2. W.A. Kirk, P.S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89.

3. S. Sadiq Basha and P. Veeramini, Best proximity pairs and Best approximations. Acta Sci. Math. (Szeged) 63 (1-2) (1997), 289-300

4. S. Sadiq Bacha, Extentions of Banach’s contraction principle, J. Num. Func. Anal. Optim. Theory Appl. 31 (2010), 569-576.

5. S. Sadiq Basha, Best proximity point theorems generalizing the contraction principle, Nonlinear Anal. 74 (2011), 844-850.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3