Optimal siting of capacitors in distribution grids considering electric vehicle load growth using improved flower pollination algorithm

Author:

Janamala Varaprasad1

Affiliation:

1. Department of Electrical and Electronics Engineering, School of Engineering and Technology, CHRIST (Deemed to be University), Bangalore, Karnataka, India

Abstract

The optimal VAr compensation using capacitor banks (CBs) in radial distribution networks (RDNs) is solved in this paper while taking the growth of the load from electric vehicles (EVs) into consideration. This is accomplished by adapting an improved variant of the flower pollination algorithm (IFPA) with an enhanced local search capability. The primary objective of determining the locations and sizes of CBs is to minimize the distribution losses in the operation and control of RDNs. Additionally, the effect of CBs is shown by the increased net savings, greater voltage stability, and improved voltage profile. A voltage stability index (VSI) was used in the optimization process to determine the predefined search space for CB locations, and a double-direction learning strategy (DLS) was then considered to optimize the locations and sizes while maintaining a balance between the exploration and exploitation phases. Three IEEE RDNs were used to simulate various EV load increase scenarios as well as typical loading situations. According to a comparison with the literature, the IPFA produced global optimum results, and the proposed CBs allocation approach demonstrated enhanced performance in RDNs under all scenarios of EV load growth.

Publisher

National Library of Serbia

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3