Induction vacuum smelting of Co-Al-W superalloys - optimizing the feedstock based on the alloy's chemical composition, elemental segregation, and slag formation

Author:

Mikuszewski T.1,Tomaszewska A.1,Moskal G.2,Migas D.1,Witala B.3

Affiliation:

1. Silesian University of Technology, Department of Materials Technologies, Katowice, Poland

2. Silesian University of Technology, Department of Materials Technologies, Katowice, Poland + Silesian University of Technology, University Zone of Material Innovations, Katowice, Poland

3. Silesian University of Technology, Department of Materials Technologies, Katowice, Poland + Silesian Aviation Technology Laboratory, Section for Advanced Materials and Protective Coatings Technologies for Aircraft Engines and Propulsion Systems, Katowice, Poland

Abstract

In this study, the manufacturing of Co-Al-W alloys by smelting in a vacuum induction furnace was discussed taking into account the optimizing of the feedstock material morphology. Herein, the influence of various feedstock conditions and the order of introducing the alloying elements into a liquid alloy were analyzed and described. The investigation revealed that it was possible to obtain the desired chemical composition of Co-Al-W alloys using fragmented tungsten pellets introduced from a vacuum feeder into the liquid Co-Al alloy heated above the liquidus temperature to maximum of 40-50?C. This technical variant required accurate temperature control of the molten alloy, which did not ensure complete reproducibility. The disadvantage of this process was a relatively high slag formation. The optimal technical solution involved obtaining the liquid Co-W solution and introducing Al at the end of the smelting process; in this variant, the slagging effect was relatively low. Additionally, melting of the alloy in an argon atmosphere reduced the loss of aluminum due to evaporation, as compared to melting in a vacuum. The smelting process could be carried out either in Al2O3 solid crucibles or in compacted crucibles made of MgO-based refractory mass.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3