Affiliation:
1. Department of Mathematics, University of Sistan and Baluchestan, Zahedan, I.R.Iran
Abstract
In this article, the concept of the A-Davis-Wielandt Berezin number is
introduced for positive operatorA. Some upper and lower bounds for the
A-Davis-Wielandt Berezin number are proved. Moreover, some inequalities
related to the concept of the Davis-Wielandt Berezin number are obtained,
which are generalizations of known results. Among them, it is shown that
ber2 dw(S) ? inf ??C {(2||Re(?)Re(S) + Im(?)Im(S)|| + ||S*S ? 2Re(??S)2||
+ 2||Re(??S)|| ? |?|2 + ber2(S ? ?I)}, where S ? B(H(?)). Also, we
determined the exact value of the A-Davis-Wielandt Berezin number of some
special type of operator matrices.
Publisher
National Library of Serbia
Reference27 articles.
1. M.W. Alomari, M. Hajmohamadi, and M. Bakherad, Norm-Parallelism of Hilbert space operators and the Davis-Wielandt Berezin number, Submmited.
2. M.L. Arias, G. Corach and M.C. Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integral Equations operator Theory, 62 (2008), 11-28.
3. M.L. Arias, G. Corach and M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl., 428 (7) (2008), 1460-1475.
4. Aniket Bhanja, Pintu Bhunia and Kallol Paul, On generalized Davis-Wielandt radius inequalities of semi-Hilbertian space operators, Math. FA. ArXive:2006..05069v1.
5. S. Bag, P. Bhunia and K. Paul, Bounds of numerical radius of bounded linear operator using t-Aluthge transform. Math. Inequal.Appl. 23(3), 991-1004(2020).