Valence XPS structure and chemical bond in Cs2UO2Cl4

Author:

Teterin Yury1,Maslakov Konstantin2,Ryzhkov Mikhail3,Teterin Anton4,Ivanov Kirill2,Kalmykov Stepan2,Petrov Vladimir2,Suglobov Dmitry5

Affiliation:

1. NRC “Kurchatov Institute”, Moscow, Russia + Lomonosov Moscow State University, Chemistry Department, Moscow, Russia

2. Lomonosov Moscow State University, Chemistry Department, Moscow, Russia

3. Institute of Solid State Chemistry, Ural Department of RAS, Ekaterinburg, Russia

4. NRC “Kurchatov Institute”, Moscow, Russia

5. V.G. Khlopin Radium Institute, St. Petersburg, Russia

Abstract

Quantitative analysis was done of the valence electrons X-ray photoelectron spectra structure in the binding energy (BE) range of 0 eV to ~35 eV for crystalline dicaesium tetrachloro-dioxouranium (VI) (Cs2UO2Cl4). This compound contains the uranyl group UO2. The BE and structure of the core electronic shells (~35 eV-1250 eV), as well as the relativistic discrete variation calculation results for the UO2Cl4(D4h) cluster reflecting U close environment in Cs2UO2Cl4 were taken into account. The experimental data show that many-body effects due to the presence of cesium and chlorine contribute to the outer valence (0-~15 eV BE) spectral structure much less than to the inner valence (~15 eV-~35 eV BE) one. The filled U5f electronic states were theoretically calculated and experimentally confirmed to be present in the valence band of Cs2UO2Cl4. It corroborates the suggestion on the direct participation of the U5f electrons in the chemical bond. Electrons of the U6p atomic orbitals participate in formation of both the inner (IVMO) and the outer (OVMO) valence molecular orbitals (bands). The filled U6p and the O2s, Cl3s electronic shells were found to make the largest contributions to the IVMO formation. The molecular orbitals composition and the sequence order in the binding energy range 0 eV-~35 eV in the UO2Cl4 cluster were established. The experimental and theoretical data allowed a quantitative molecular orbitals scheme for the UO2Cl4 cluster in the BE range 0-~35 eV, which is fundamental for both understanding the chemical bond nature in Cs2UO2Cl4 and the interpretation of other X-ray spectra of Cs2UO2Cl4. The contributions to the chemical binding for the UO2Cl4 cluster were evaluated to be: the OVMO contribution - 76%, and the IVMO contribution - 24 %.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a retarding-field type magnetic bottle spectrometer for studying the internal-conversion process of 235mU;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2020-10

2. Electronic structure and chemical bond nature in Cs2NpO2Cl4;Nuclear Technology and Radiation Protection;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3