The modulation of response caused by the fractional derivative in the Duffing system under super-harmonic resonance

Author:

Li Yajie1,Wu Zhiqiang2,Lan Qixun1,Cai Yujie1,Xu Huafeng1,Sun Yongtao3

Affiliation:

1. School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, China

2. Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, China + Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin University, Tianjin, China

3. School of Mathematics & Physics, Qingdao University of Science and Technology, Qingdao, China + Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, China + Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin University, Tianjin, China

Abstract

The dynamic characteristics of the 3:1 super-harmonic resonance response of the Duffing oscillator with the fractional derivative are studied. Firstly, the approximate solution of the amplitude-frequency response of the system is obtained by using the periodic characteristic of the response. Secondly, a set of critical parameters for the qualitative change of amplitude-frequency response of the system is derived according to the singularity theory and the two types of the responses are obtained. Finally, the components of the 1X and 3X frequencies of the system?s time history are extracted by the spectrum analysis, and then the correctness of the theoretical analysis is verified by comparing them with the approximate solution. It is found that the amplitude-frequency responses of the system can be changed essentially by changing the order and coefficient of the fractional derivative. The method used in this paper can be used to design a fractional order controller for adjusting the amplitude-frequency response of the fractional dynamical system.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3