A fast algorithm for background tracking in video surveillance, using nonparametric kernel density estimation

Author:

Ianasi Codrut1,Gui Vasile2,Toma Corneliu3,Pescaru Dan3

Affiliation:

1. S.C.A & C Blue Sys Technologies S.R.L. Timisoara, Romania

2. Polytechnic University, Department of Communication and Department of Computer Science and Engineering, Timisoara, Romania

3. ista

Abstract

Moving object detection and tracking in video surveillance systems is commonly based on background estimation and subtraction. For satisfactory performance in real world applications, robust estimators, tolerating the presence of outliers in the data, are needed. Nonparametric kernel density estimation has been successfully used in modeling the background statistics due to its capability to perform well without making any assumption about the form of the underlying distributions. However, in real-time applications, the O(N2) complexity of the method can be a bottleneck preventing the object tracking and event analysis modules from having the computing time needed. In this paper, we propose a new background subtraction technique, using multiresolution and recursive density estimation with mean shift based mode tracking. An algorithm with complexity independent on N is developed for fast, real-time implementation. Comparative results with known methods are included, in order to attest the effectiveness and quality of the proposed approach.

Publisher

National Library of Serbia

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3