High-pressure ignition behaviors of methane/ethane/propane-n-heptane mixtures representing natural gas-diesel dual fuel

Author:

Heng Yijun1,Liang Junjie1,Li Gesheng1,Li Feng2,Yu Fulin2

Affiliation:

1. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan, Hubei, PR China + School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, Hubei, PR China

2. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, Hubei, PR China

Abstract

Considering that natural gas is the key transition fuel towards the carbon-neutral future, the objective of the present study is to gain insight into evolution features of natural gas-diesel dual fuel during ignition process. Firstly, new experimental data of ignition delay times for the stoichiometric methane/ethane/propane-n-heptane mixtures, which is of significance for validating and optimizing chemical kinetic models of the dual fuel at engine-relevant conditions, were acquired through a shock-tube facility at pressure of 40 atm within temperature range of 1200 to 1600 K, and quantitative influences of components of the fuel mixtures on ignition were determined. Then importance of species including typical radicals and alkenes during ignition processes were identified. Besides, stage characteristics of the fuel mixtures during ignition processes were analyzed. The result shows that the ignition of real natural gas which contains some ethane and propane is greatly different from that of methane. It can be seen that the C2 substances are significant to control ignition of the mixtures. For methane-n-heptane and methane/ethane-n-heptane mixtures, the whole ignition process can be divided into decomposition and oxidation stages. While for the fuel mixtures containing propane and n-heptane, it seems to be more reasonable to divide the whole ignition process into three stages, i.e., decomposition, mixed and oxidation stages.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3