Dual solutions of water-based micropolar nanofluid flow over a shrinking sheet with thermal transmission: Stability analysis

Author:

Dey Debasish1,Borah Rupjyoti2

Affiliation:

1. Department of Mathematics, Tingkhong College, Dibrugarh, Assam, India

2. Department of Mathematics, Dibrugarh University, Dibrugarh, Assam, India + Department of Mathematics, Tingkhong College, Dibrugarh, Assam, India

Abstract

Investigation of the nature of dual solutions of the water-based micropolar nanofluid flow with thermal transmission due to a contracting surface has been done in the work. The flow is characterized by its shrinking velocity and imposed magnetic field. Also, this work is one of the contributions that illustrate the microrotation and microinertia descriptions of nanofluids. The effects of metallic nanoparticles Copper (Cu) and Copper oxide (CuO) have been discussed throughout this study. A uniform magnetic field has been applied in the normal direction of the flow. A set of basic equations that supports the present problem are derived from the principle of conservation laws and have been modernized into a set of solvable forms by employing suitable similarity variables. The MATLbuilt-in bvp4c solver scheme is engineered to solve this problem. In order to tackle boundary value problems that are highly non-linear, this numerical method largely relies on collocation and finite difference techniques. From this study, we have perceived that the speed of the motion of CuO-H2O nanofluid in both cases (the first and second solutions) is less than Cu-H2O nanofluid. The material parameter plays an important role by enhancing the heat transfer rate of the fluid at the surface of the sheet in both time-dependent and time-independent cases. From the stability analysis, the first solution has been found as the stable and physically attainable solution. Additionally, the material parameter aids in reducing the effects of couple stress and shear stress on the fluid in both situations near the surface.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3