Real-time tracking and mining of users’ actions over social media

Author:

Kajan Ejub1,Faci Noura2,Maamar Zakaria3,Sellami Mohamed4,Ugljanin Emir5,Kheddouci Hamamache2,Stojanovic Dragan5,Benslimane Djamal2

Affiliation:

1. State University of Novi Pazar, Novi Pazar, Serbia

2. Univ Lyon, Université Claude Bernard Lyon, LIRIS, Villeurbanne Cedex, France

3. Zayed University, Dubai, U.A.E

4. Télécom SudParis, SAMOVAR, Institut Polytechnique de Paris, Evry Cedex, France

5. University of Niš Niš,Serbia

Abstract

With the advent of Web 2.0 technologies and social media, companies are actively looking for ways to know and understand what users think and say about their products and services. Indeed, it has become the practice that users go online using social media like Facebook to raise concerns, make comments, and share recommendations. All these actions can be tracked in real-time and then mined using advanced techniques like data analytics and sentiment analysis. This paper discusses such tracking and mining through a system called Social Miner that allows companies to make decisions about what, when, and how to respond to users? actions over social media. Questions that Social Miner allows to answer include what actions were frequently executed and why certain actions were executed more than others.

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3