Multi peak emission and morphological evolution of Fe-doped ZnOs nanoflowers

Author:

Neelamkodan Hind1,Megha Unikoth1,Binitha Puzhakkara Manathanath2

Affiliation:

1. Department of Physics, Govt. Arts and Science College, Meenchanda, Calicut, Affiliated to University of Calicut, Kerala, India + Department of Physics, MES Mampad College, Mampad P.O, Malappuram, Affiliated to University of Calicut, Kerala, India

2. Department of Physics, Govt. Arts and Science College, Meenchanda, Calicut, Affiliated to University of Calicut, Kerala, India

Abstract

The nanoflowers and nanoblocks of Fe-doped ZnO (i.e. ZnO doped with 0, 1, 2, 3, 4 and 5% Fe) were synthesised by co-precipitation technique. XRD analysis showed that the samples have wurtzite structure containing mostly Fe3+ in the samples with 1% Fe and a mixture of Fe3+ and Fe2+ in the samples with higher amount of dopant. Morphology transformations from nanoflowers to nanoblocks, then into a combination of nanoflowers and nanoblocks were observed. The UV analysis identified the presence of multi-absorption regions in the doped samples. Due to the elevated Fe2+ concentration, the band gap of the 5% doped nanoblocks expanded and behaved irregularly. The room temperature photoluminescence characteristics of the Fe-doped ZnO nanostructures were determined. It was found that, in addition to the detected peaks in the yellow and red regions, the sample doped with 1%Fe shows two peaks in the blue region which could be interesting for multifunctional applications in the field of optoelectronics.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3