Characterization of surface roughness of new nanophotonic soft contact lenses using lacunarity and AFM method

Author:

Mitrovic Aleksandra1ORCID,Bojovic Bozica1,Stamenkovic Dragomir2,Popovic Dejana3

Affiliation:

1. Faculty of Mechanical Engineering, Belgrade

2. Optix, Belgrade

3. Vinča Institute of Nuclear Sciences, Belgrade

Abstract

The aim of this study was to develop new soft contact lens (SCL) materials which would, after recommended and existing machining processes, improve surface roughness. Nanomaterials (fullerene, fullerol and methformin hydroxylate fullerene) were incorporated into commercial material for SCL (SL38) based on PHEMA, which were derived by the technology in the production lab of the company Soleko (Milan, Italy). Nanophotonic SCLs (SL38-A, SL38-B, SL38-C, respectively) were produced in the company Optix (Belgrade, Serbia) from the obtained materials. For the surface characterization of SCLs, AFM analysis and lacunarity method were performed. The results showed that for the SL38-B average roughness value is lower than those of SL38-A and SL38. The topography parameters of SL38-C were between the parameters of SL38-A and SL38-B. Lacunarity analysis of AFM images confirmed that SCLs surface state should belong to either group of adequate (slanted p-diagram) or inadequate (contorted p-diagram) roughness concerning tear film stability. Nanophotonic SCL SL38-C exibits more acceptable performance considering SCL surface functional behavior as compared to other SCLs. The positive result of incorporating nanomaterials into basic material for SCL is better quality of the nanophotonic SCLs surfaces. On the bases of these experiments, the assumption that incorporation of fullerene derivate will not increase surface roughness parameters is confirmed.

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3