Seam pipes for process industry-fracture analysis by using ring-shaped specimens

Author:

Musraty Walid1,Medjo Bojan1,Gubeljak Nenad2,Stefane Primoz2,Radosavljevic Zoran3,Burzic Zijah4,Rakin Marko1

Affiliation:

1. Faculty of Technology and Metallurgy, Belgrade

2. University of Maribor, Faculty of Mechanical Engineering, Maribor, Slovenia

3. Euro-Mont-Ing, Belgrade

4. Military Technical Institute (VTI), Belgrade

Abstract

Pipelines are commonly used in process industry for transport of fluids, as well as granular solids, due to their numerous advantages in comparison to other transportation means. Pipe integrity is essential for a reliable work of the entire plant, as well as for safety assurance. Also, serious ecological consequences may follow the pipeline failure in some cases, i.e. due to the leak of toxic, flammable or otherwise dangerous fluids in a chemical or some other plant. Therefore, it is very important to examine the fracture behaviour of pipelines, which is done here by testing the recently proposed ring-shaped specimens exposed to bending. The specimens were fabricated from a seam pipe for pressure applications (allowed for usage on temperatures up to 300?C). Initial defects, very narrow notches, were machined either in the base metal and weld metal (seam) or in the base metal only. Regardless of the defect position, ductile fracture mechanism is observed in all specimens. The results show that the ring-shaped specimen can be successfully used for fracture characterisation of pipeline material, especially for thin-walled pipes which are not suitable for production of standard fracture mechanics specimens due to the insufficient wall thickness.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3