Testing the protective efficiency of personal respiratory protection devices in radiologically contaminated environments

Author:

Rajic Dusan1,Ivankovic Negovan2,Ivankovic Natasa3,Ilic Marina4,Senic Zeljko4,Pajic Natasa4

Affiliation:

1. Faculty of Technology and Metallurgy, Innovation Centre, Belgrade

2. University of Defense, Military Academy, Belgrade

3. Faculty for Physical Chemistry, Belgrade

4. Military Technical Institute, Belgrade

Abstract

The use of ammunition primed with depleted uranium is one of the hallmarks of modern combat operations, resulting in environmental contamination by particles of depleted uranium and uranium oxide, scattered around in the form of submicron-scale aerosols. This paper examined the protective effectiveness of the Serbian military's M3 protective face mask in relation to the presence of airborne depleted uranium and its by-products. Sodium chloride in solid aerosol form was used as a test substance and adequate physical simulator of such radioactive aerosols because its granulometric (particle) size distribution met the requirements of suitability as a simulator. Determination of aerosol concentration was carried out by flame photometry method, whilst granulometric distribution was determined by an electric particles analyzer. It was established that the total internal leakage of the M3 protective mask was as much a function of the penetration of particles through the combined M3 filter as of the leaks along the fitting line of the user's face mask and the inhalation valve. In terms of its protective effect against aerosols of depleted uranium and associated oxides, the Serbian M3 protective mask was determined to be of high efficiency and physiological suitability.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3