Numerical investigation of thermal hydraulic performance of an automobile heat transfer tube with ellipsoid dimples

Author:

Zhang Xiang1,Huang Ying1,Zeng Jing1,Ma Zongpeng1,Song Jiangnan1,Chen Lunjun1,Gao Tong1

Affiliation:

1. School of Mechanical Engineering, Guizhou University, Guiyang, Guizhou, China

Abstract

The heat transfer tube is one of the key components affecting the heat transfer performance of automobile radiators. Proposes a new kind of heat transfer tube with ellipsoidal dimples based on the elliptical heat transfer tube. The effects of the arrangement and pitch ellipsoidal dimples on the turbulent heat transfer and flow resistance of the heat transfer tube are further studied by numerical simulation in the range of Reynolds number in 4080-24480. The results show that the ellipsoid dimple arrangement makes the near-wall fluid produce different flow forms, which enhances the turbulence degree of the tube fluid and thus improves the convective heat transfer capacity of the tube. Among them: vertical parallel arrangement (Case 1) causes convergent flow, oblique parallel arrangement (Case 2) causes helical flow, and diagonal symmetrical arrangement (Case 3) causes cross-helical flow. The cross-helical flow causes the most significant degree of turbulence, followed by the helical flow. Furthermore, the arrangement and pitch of the ellipsoidal dimples also have an essential influence on the heat transfer performance and flow resistance of the heat transfer tube. The Nusselt number and friction factor of Cases 1-3 increase successively. But the Nusselt number and friction factor gradually decrease with the rise of the pitch of ellipsoidal dimples. However, under different ellipsoidal dimples pitch, the comprehensive performance of Cases 1-3 is better than that of smooth elliptical tubes. Among them, Case 3 has the best performance when P = 15 mm, and the performance evaluation criteria value is up to 1.39.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3