Integrating principal component analysis and vector quantization with support vector regression for sulfur content prediction in HDS process

Author:

Shokri Saeid1,Sadeghi Mohammad1,Marvast Mahdi2,Narasimhan Shankar3

Affiliation:

1. Department of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

2. Process & Equipment Technology Development Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

3. Department of Chemical Engineering, IIT Madras, Chennai, India

Abstract

An accurate prediction of sulfur content is very important for the proper operation and product quality control in hydrodesulfurization (HDS) process. For this purpose, a reliable data- driven soft sensors utilizing Support Vector Regression (SVR) was developed and the effects of integrating Vector Quantization (VQ) with Principle Component Analysis (PCA) were studied on the assessment of this soft sensor. First, in pre-processing step the PCA and VQ techniques were used to reduce dimensions of the original input datasets. Then, the compressed datasets were used as input variables for the SVR model. Experimental data from the HDS setup were employed to validate the proposed integrated model. The integration of VQ/PCA techniques with SVR model was able to increase the prediction accuracy of SVR. The obtained results show that integrated technique (VQ-SVR) was better than (PCA-SVR) in prediction accuracy. Also, VQ decreased the sum of the training and test time of SVR model in comparison with PCA. For further evaluation, the performance of VQ-SVR model was also compared to that of SVR. The obtained results indicated that VQ-SVR model delivered the best satisfactory predicting performance (AARE= 0.0668 and R2= 0.995) in comparison with investigated models.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3