Decision making model for detecting infected people with COVID-19

Author:

Mahmood Sahar1

Affiliation:

1. Civil Engineering Department, University of Technology-Iraq, Baghdad, Iraq

Abstract

The detection of people that are infected with COVID-19 is critical issue due to the high variance of appearing the symptoms between them. Therefore, different medical tests are adopted to detect the patients, such as Polymerase Chain Reaction (PCR) and SARS-CoV-2 Antibodies. In order to produce a model for detecting the infected people, the decision-making techniques can be utilized. In this paper, the decision tree technique based Decisive Decision Tree (DDT) model is considered to propose an optimized decision-making approach for detecting the infected people with negative PCR test results using SARS-CoV-2 antibodies and Complete Blood Count (CBC) test. Moreover, the fever and cough symptoms have been adopted as well to improve the design of decision tree, in which the precision of decision is increased as well. The proposed DDT model provide three decision classes of Infected (I), Not Infected (NI), and Suspected (S) based on the considered parameters. The proposed approach is tested over different patients? samples in off and real-time simulation, and the obtained results show a satisfactory decision class accuracy ratio that varies from 95% to 100%.

Publisher

National Library of Serbia

Subject

Management Science and Operations Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3